extension of the concentration range of application of the FLK eq 1.

Registry No. LICI, 7447-41-8; NaCl, 7647-14-5; NaBr, 7647-15-6; NaI, 7681-82-5; KF, 7789-23-3.

Literature Cited

- (1) Falkenhagen, H.; Leist, M.; Kelbg, G. Ann. Phys. 1952, 6, 51.
- (2) Wishaw, B. F.; Stokes, R. H. J. Am. Chem. Soc. 1954, 76, 2065.
 (3) Monica, M. D. Electrochim. Acta 1984, 29, 159.
- (4) Monica, M. D.; Ceglie, A.; Agostiano, A. Electrochim. Acta 1984, 29, 933.
- (5) Monica, M. D.; Ceglie, A.; Agostiano, A. J. Phys. Chem. 1984, 88, 2124.
- (6) Goldsack, D. E.; Franchetto, R.; Franchetto, A. Can. J. Chem. 1976, 54, 2953
- Hasted, J. B.; Ritson, D. M.; Collie, C. H. J. Chem. Phys. 1948, 16, 1.
 Glueckauf, E. Trans. Faraday Soc. 1964, 60, 1637.
 Hasted, J. B. In Dielectric and Related Molecular Processes, Special-
- ist Periodical Reports; Davles, M., Ed.; The Chemical Society: London, 1972; Vol. 1, Chapter 5.
- (10) Lestrade, J.-C.; Badiali, J.-P.; Cachet, H. In Dielectric and Related Moiecular Processes . Specialist Periodical Reports : Davies, M., Ed.: The

- Chemical Soclety: London, 1975; Vol. 2, Chapter 3.
- (11) Hubbard, J. B.; Colonomos, P.; Wolynes, P. G. J. Chem. Phys. 1979, 71, 2652.
- Pottel, R. In Water: A Comprehensive Treatise; Franks, F., Ed.; Plenum Press: New York, 1973; Vol. 3, Chapter 8.
 Ruff, I. J. Chem. Soc., Faraday Trans. 2 1977, 73, 1858.
- Winson, P., IV; Cole, R. H. J. Phys. Chem. 1985, 89, 3775.
 Akhadov, Y. Y. Dielectric Properties of Binary Solutions; Pergamon
 - Press: Oxford, U.K., 1981.
- (16) Carman, P. C. J. Phys. Chem. 1989, 73, 1095.
- Postler, M. Collect. Czech. Chem. Commun. 1970, 35, 535. Janz, G. J.; Oliver, B. G.; Lakshminarayanan, G. R.; Mayer, G. E. J. (18)
- Phys. Chem. 1970, 74, 1285.
 (19) Goldsack, D. E.; Franchetto, R. Can. J. Chem. 1977, 55, 1062.
 (20) Lobo, V. M. M. Electrolyte Solutions: Literature Data on Thermody-
- (2) Cobb, V. M. M. Electrolyte Solutions: Literatule Data on Internoly-namic and Transport Properties; Coimbra: 1984; Vol. 1.
 (21) Swain, C. G.; Evans, D. F. J. Am. Chem. Soc. 1986, 88, 383.
 (22) Satoh, T.; Hayashi, K. Bull. Chem. Soc. Jpn. 1981, 34, 1260.
 (23) Horvath, A. L. Aqueous Electrolyte Solutions; Ellis Horwood: Chiches-

- ter, England, 1985; p 262. Bockris, J. O'M.; Reddy, A. K. N. *Modern Electrochemistry*; Plenum Press: New York, 1970; Vol. 1, pp 132–158. (24)

Received for review April 23, 1990. Accepted July 9, 1990.

High-Pressure Vapor-Liquid Equilibria for Binary Mixtures Containing a Light Paraffin and an Aromatic Compound or a Naphthene in the Range 313-473 K

Dominique Richon, Serge Laugier, and Henri Renon*

Centre Réacteurs et Processus, Ecole des Mines de Paris, 60, bd. Saint-Michel, 75006 Paris, France

The experimental study summarized here represents a continuing effort to obtain phase equilibrium data on selected binary systems. The lighter components of the binaries are methane, ethane, and propane. The heavier components are toluene, m-xylene, mesitylene, n-propyibenzene, cyclohexane, methylcyclohexane, and n-propylcyclohexane. Three apparatuses based on a static method were used at three temperatures (ca. 313, 393, and 473 K) and pressures up to the critical one.

Introduction

This work is a contribution to the Gas Processors Association Project to establish a data bank of high-pressure vapor-liquid equilibria (VLE) between natural gas components and heavier hydrocarbons. Binary VLE were measured by using several experimental methods (1-4).

Consistency tests on our lowest pressure data have been presented for two binaries (5). Careful measurements at pressures close to atmospheric allow calculation of cross second and third virial coefficients, only if heavy-component vapor-phase composition is precise and exempt of systematic errors. The main interest of testing our data through the Prausnitz-Keeler (6) test was to find out that some of our previous data had systematic errors. New experimental measurements (5), coupled with data obtained with a specially developed new apparatus (dynamic type), made it possible to identify the unsatisfactory operating conditions of the capillary sampling system. When they were modified it became possible to obtain reliable new results. All the data presented in this paper satisfy the Prausnitz-Keeler test.

Experimental Section

Apparatus and Procedure. The three apparatuses used in this work are based on the static method with analysis of the equilibrium phases. They differ mainly by the sampling system. The first, apparatus 1, developed by Legret et al. (7), had detachable microcells to sample both phases between 1 and 100 MPa, at 233-433 K. This equipment is particularly suited for studies at temperatures that are low compared to the components' normal boiling temperatures. Sampling microcells are removed from the equilibrium cell and placed inside a special heated injection assembly to a gas-liquid chromatograph (GLC).

The second apparatus, apparatus 2, developed by Figuière et al. (8), uses two valves to perform microexpansion sampling between 0.5 and 40 MPa, at 333-673 K. The sampling valves are part of the equilibrium cell. The equilibrium temperature has to be higher than the bubble temperature of the heavlest component at GLC carrier gas pressure to ensure fast vaporization of liquid samples.

Apparatus 3, designed by Laugier and Richon (9) to combine the advantages of the two preceding apparatuses, uses sampling by capillaries. The capillaries limit the sample size by hydrodynamic slow flow and connect the sampling tip immersed in the temperature-controlled liquid bath where the equilibrium cell is immersed to the heated injector. In this way, the temperature of the on-line injection chamber has no effect on that of the equilibrium cell.

Since the volumes of the samples in each of the three apparatuses are sufficiently small $(2 \times 10^{-5}\% \text{ to } 2 \times 10^{-4}\%)$, compared to the cell volumes, sampling does not disturb the state of equilibrium.

Pressure P measurements were performed by using membrane pressure transducers calibrated with a dead-weight

Table I. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Methane (1)-n-Propylbenzene (2)

	$\sigma(T)/$	P/	σ(P)/		$\sigma(\mathbf{x}_1)/$		$\sigma(y_1)/$		$\sigma(T)/$	P/	$\sigma(\mathbf{P})/$		$\sigma(x_1)/$		$\sigma(y_1)/$
T/K	ĸ	MPa	MPa	x 1	10-9	_ y 1	10-3	T/K	K	MPa	MPa	x ₁	10 ⁻³	y_1	10-8
313.2	0.1	1.00	0.01			0.9987	0.2°	392.7	0.1	35.4	0.1	0.635	8ª	0.947	3ª
313.2	0.1	1.55	0.01			0.9990	0.2°	392.7	0.1	37.9	0.1	0.687	8ª	0.919	34
313.2	0.1	1.98	0.01			0.9992	0.2 ^c	392.7	0.1	39.0	0.1			0.902	3ª
313.2	0.1	5.06	0.01			0.9993	0.2°	392.7	0.1	39.5	0.1	0.729	8ª		
313.6	0.1	5.1	0.1	0.128	6ª	0.9992	0.3ª	392.7	0.1	39.9	0.1			0.875	4ª
313.6	0.1	10.0	0.1	0.232	10ª	0.9993	0.3ª	392.7	0.1	40.3	0.1	0.769	8ª	0.844	5ª
313.6	0.1	14.9	0.1	0.316	14ª	0.9991	0.3ª	472 8	0.5	1 00	0.04			0 820	64
313.6	0.1	19.8	0.1	0.397	17ª	0.9984	0.3ª	479.8	0.5	2.30	0.04	0.044	10	0.020	0
313.6	0.1	24.9	0.1	0.461	20ª	0.9962	0.5ª	472.0	0.5	2.14	0.04	0.044	26		
313.6	0.1	29.9	0.1	0.511	22ª	0.9920	0.94	472.0	0.5	4 12	0.04	0.007	4	0 009	10
313.6	0.1	35.0	0.1	0.555	25ª	0.9853	0.9ª	472.0	0.5	5 09	0.04	0 100	26	0.902	4
313.6	0.1	39.8	0.1	0.610	10ª	0.9794	0.5ª	472.0	0.5	7 90	0.04	0.105	0	0.036	20
313.6	0.1	44.9	0.1			0.9708	0.5ª	412.0	0.5	10.19	0.04	0.917	76	0.930	2
313.6	0.1	45.1	0.1	0.673	11ª			472.0	0.5	11 00	0.04	0.217	1-	0.041	04
313.6	0.1	50.0	0.1			0.9368	0.7ª	470 9	0.0	15.00	0.04	0.916	76	0.941	2-
313.6	0.1	52.7	0.1	0.805	10ª			472.0	0.0	15.20	0.04	0.310	1-	0.000	94
313.6	0.1	53.2	0.1			0.8686	1.0ª	472.0	0.5	10.07	0.04	0.410	78	0.939	2.
200 7	0.1		0.1	0.100	44			4/2.0	0.5	20.33	0.04	0.412	10	0.000	= h
092.(200 7	0.1	0.0 10 F	0.1	0.120	4"	0.0005	0.44	472.0	0.0	21.00	0.04	0 214	1.04	0.933	5-
392.7	0.1	10.5	0.1	0.224	0-	0.9935	0.4	472.8	0.5	20.18	0.04	0.514	105	0.070	4.
392.7	0.1	14.0	0.1	0.000	0.0	0.9919	0.5-	472.8	0.5	27.79	0.04	0 504	~ h	0.872	4"
392.7	0.1	15.2	0.1	0.306	8.	0.0000	0.40	472.8	0.5	28.60	0.04	0.594	.70	0.001	
392.7	0.1	20.3	0.1	0.389	8.	0.9900	0.4"	472.8	0.5	30.05	0.04		-	0.821	40
392.7	0.1	25.5	0.1	0.472	8.			472.8	0.5	30.58	0.04	0.672	.70		
392.7	0.1	26.0	0.1	0.480	8"	0.985	1"	472.8	0.5	30.91	0.04	0.709	6°		
392.7	0.1	30.3	0.1	0.550	10ª	0.974	1ª								

^a Apparatus 1 (1). ^b Apparatus 2 (1). ^c Apparatus 3 (present work).

Table II. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Methane (1)-Methylcyclohexane (2)

T/K	σ(<i>T</i>)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> 1	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(T)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	у ₁	$\frac{\sigma(y_1)}{10^{-3}}$	
313.4 313.4 313.4 313.4 313.4 313.4 313.4 313.4 313.4	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.52 5.02 10.08 15.07 20.06 22.49 25.23 27.71	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.081 0.153 0.288 0.412 0.530 0.587 0.660 0.737	3ª 3ª 5ª 7ª 7ª 5ª 5ª	0.9914 0.9932 0.9921 0.985 0.973 0.960 0.945 0.910	$\begin{array}{c} 0.6^{a} \\ 0.5^{a} \\ 0.5^{a} \\ 1^{a} \\ 2^{a} \\ 3^{a} \\ 3^{a} \\ 5^{a} \end{array}$	393.1 393.1 393.1 393.1 473.2 473.2 473.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	22.07 24.96 26.00 27.00 3.35 5.03 6.52	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.538 0.608 0.644 0.678 0.065 0.111 0.149	70 60 70 50 20 30 30 30	0.901 0.872 0.853 0.837 0.654 0.743 0.775	4 ^b 3 ^b 4 ^b 5 ^b 5 ^b 4 ^b	-
393.1 393.1 393.1 393.1	0.5 0.5 0.5 0.5	2.89 8.05 13.03 18.00	0.02 0.02 0.02 0.02	0.071 0.199 0.319 0.428	26 36 56 76	0.917 0.944 0.942 0.927	3 ^b 4 ^b 2 ^b 3 ^b	473.2 473.2 473.2 473.2 473.2	0.5 0.5 0.5 0.5	8.94 11.52 14.04 16.53 18.02	0.02 0.02 0.02 0.02 0.02	0.212 0.281 0.346 0.410 0.462	40 40 50 70 70	0.803 0.810 0.800 0.786 0.769	40 40 40 50	

^a Apparatus 3 (4). ^b Apparatus 2 (4).

Table III. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Methane (1)- π -propylcyclohexane (2)

T/K	σ(T)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(T)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-8}}$	 y ₁	$\frac{\sigma(y_1)}{10^{-8}}$
313.6	0.1	3.15	0.1	0.131	5ª		<u> </u>	393.1	0.5	32,50	0.04	0.679	10 ^b	0.926	30
313.6	0.1	5.20	0.1	0.179	5^a	0.9986	0.5ª	393.1	0.5	33.65	0.04			0.914	30
313.6	0.1	7.45	0.1	0.234	5ª	0.9986	0.5ª	393.1	0.5	34.50	0.04			0.902	35
313.6	0.1	10.50	0.1	0.303	5ª	0.9982	0.5ª	393.1	0.5	35.00	0.04	0.749	9,		
313.6	0.1	15.40	0.1	0.402	5ª	0.9982	0.9ª	393.1	0.5	35.50	0.04	0.763	70	0.884	36
313.6 313.6	0.1 0.1	20.50 25.50	0.1 0.1	0.486 0.554	6ª 7ª	0.9962 0.9937	0.5ª 0.9ª	472.8 472.8	0.5 0.5	1.50	0.04	0.038	1 ^b	0.754	7 ⁶
313.6 313.6 313.6	0.1 0.1 0.1	30.80 35.20 38.95	0.1 0.1 0.1	0.633 0.694 0.762	7ª 7ª 7º	0.987 0.977 0.960	2ª 4ª 3ª	472.8 472.8 472.8	0.5 0.5 0.5	4.00 8.00 12.00	0.04 0.04 0.04	0.105 0.202 0.296	30 60 70	0.895 0.928 0.933	4 ⁶ 3 ⁶ 26
393.1	0.5	2.50	0.04	0.073	2 ^b	0.976	6*	472.8	0.5	15.90	0.04	0.384	8 ⁶	0.927	4 ^b
393.1	0.5	10.10	0.04	0.141	4° 6°	0.981	6°	472.8 472.8	0.5	20.10 23.90	0.04	0.477	9º	0.918	36
393.1	0.5	15.10	0.04	0.359	70	0.979	50	472.8	0.5	25.90	0.04	0.639	86	0.850	30
393.1	0.5	20.00	0.04	0.452	96	0.972	4 ^b	472.8	0.5	26.40	0.04	0.658	7٥	0.838	5 ⁶
393.1 393.1	0.5 0.5	$25.00 \\ 30.00$	0.04 0.04	0. 539 0.626	8 ⁶ 10 ⁶	0.963 0.944	4 ⁶ 4 ⁶	472.8	0.5	27.00	0.04	0.712	6 ⁶	0.805	6*

^aApparatus 1 (1). ^bApparatus 2 (1).

Table IV. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Ethane (1)-Toluene (2)

				-												_
T/K	$\frac{\sigma(T)}{K}$	P/ MPa	$\sigma(P)/MPa$	x 1	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> 1	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	$\sigma(T)/K$	P/ MPa	σ(P)/ MPa	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	
313.1	0.1	0.63	0.01	0.084	2ª			393.1	0.5	6.40	0.02	0.445	66	0.945	36	
313.1	0.1	0.678	0.005			0.988	1.5°	393.1	0.5	7.76	0.02			0.936	28	
313.1	0.1	1.012	0.005			0.991	1°	393.1	0.5	7.82	0.02	0.546	70			
313.1	0.1	1.29	0.01	0.178	4ª	0.9923	0.3ª	393.1	0.5	8.90	0.02	0.628	8°	0.921	26	
313.1	0.1	1.424	0.005			0.9930	0.6°	393.1	0.5	9.92	0.02	0.718	50	0.896	36	
313.1	0.1	2.05	0.01	0.296	5ª	0.9938	0.4ª	393.1	0.5	10.19	0.02	0.742	76			
313.1	0.1	2.89	0.01	0.458	7°	0.9945	0.2ª	473.9	0.5	1 17	0.02	0.027	10	0.361	200	
313.1	0.1	3.38	0.01	0.557	7ª	0.9946	0.3ª	473.2	0.5	1.17	0.02	0.021	10	0.540	60	
313.1	0.1	3.90	0.01	0.682	6ª	0.9944	0.3ª	479.9	0.5	3 1 8	0.02	0.000	26	0.697	60	
313.1	0.1	4.35	0.01	0.805	6ª	0.9940	0.4ª	473.2	0.5	4 00	0.02	0.100	0	0.001	69	
313.1	0.1	4.73	0.01			0.9932	0.4ª	473.2	0.5	4 00	0.02	0 224	16	0.100	0	
313.1	0.1	4.77	0.01	0.905	2ª			473.2	0.5	6.51	0.02	0.224	4	0 765	50	
313.1	0.1	4.83	0.01			0.9938	0.3ª	473.2	0.5	8.27	0.02	0.200	7	0.755	70	
20.2.1	0.5	0.02	0.02	0.065	9 6	0.855	70	473.2	0.5	8.32	0.02	0.388	50	0.100	•	
393.I 202 1	0.5	0.90	0.02	0.005	2	0.000	20	473.2	0.5	0.02	0.02	0.000	50	0 7 9 4	66	
393.1 202 1	0.5	2.00	0.02	0.159	16	0.910	20	473.2	0.5	11 17	0.02	0.563	50	0.686	70	
393.1	0.5	2.10	0.02	0.100	4	0.920	5	473.2	0.5	11.17	0.02	0.000	50	0.000	60	
000 I	0.0	0.410 5 10	0.02	0.200		0.004	20	4/0.2	0.0	11.40	0.02	0.004	5	0.024	5	
JJJ.I	0.0	0.12	0.02	0.301	U"	0.740	U U									

^a Apparatus 3 (2). ^b Apparatus 2 (2). ^c Apparatus 3 (present work).

Table V. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Ethane (1)-m-Xylene (2)

TT / 12	$\sigma(T)/K$	P/ MPa	$\sigma(P)/MP_{0}$	~	$\sigma(x_1)/$		$\frac{\sigma(y_1)}{10^{-3}}$	T/K	$\sigma(T)/K$	P/ MPa	$\sigma(P)/MP_{0}$	~	$\sigma(x_1)/$		$\sigma(y_1)/$
	n	IVIFA	IVIFA	<i>x</i> ₁	10	<i>y</i> ₁		1/1	N	IVII a	1911 a	~1	10	<i>y</i> 1	10
313.1	0.1	0.51	0.01	0.071	2ª	0.9947	0.4ª	393.1	0.5	10.96	0.02	0.791	6 ⁶	0.891	4 ^b
313.1	0.1	1.22	0.01	0.183	34	0.9973	0.2ª	393.1	0.5	11.21	0.02	0.817	5 ⁶	0.859	36
313.1	0.1	1.96	0.01	0.300	5^a	0.9975	0.2ª	479 1	0.5	1 01	0.02	0.036	10	0 549	eb
313.1	0.1	2.73	0.01	0.434	7ª	0.9977	0.2ª	479.1	0.0	1.01	0.02	0.030		0.040	0
313.1	0.1	3.28	0.01	0.540	7ª	0.9979	0.2ª	470.1	0.5	1.74	0.02	0.076	2.	0.766	ch
313.1	0.1	4.10	0.01	0.726	5ª	0.9976	0.2ª	473.1	0.5	2.12	0.02	0.101	3° 4h	0.700	40
313.1	0.1	4.67	0.01	0.867	4ª	0.9967	0.2ª	473.1	0.5	3.42	0.02	0.169	4*	0.820	4
313.1	0.1	4.93	0.01	0.925	34	0.9964	0.2ª	473.1	0.5	4.81	0.02	0.050	44	0.852	5°
								473.1	0.5	4.96	0.02	0.250	40		
393.1	0.5	0.80	0.02	0.063	10	0.908	30	473.1	0.5	6.59	0.02	0.330	60		-
393.1	0.5	1.50	0.02	0.115	2°	0.941	20	473.1	0.5	6.92	0.02			0.863	3°
393.1	0.5	3.01	0.02	0.227	4 ⁶	0.958	2°	473.1	0.5	8.09	0.02	0.403	5°		
393.1	0.5	5.02	0.02	0.367	5'	0.963	20	473.1	0.5	8.57	0.02	0.424	6°	0.857	3°
393.1	0.5	6.96	0.02	0.499	6*	0.954	3°	473.1	0.5	9.54	0.02	0.474	6°		
393.1	0.5	8.98	0.02	0.626	6 ⁶	0.940	36	473.1	0.5	10.19	0.02	0. 498	6 ⁶		
393.1	0.5	9.91	0.02	0.699	56	0.925	3°	473.1	0.5	10.42	0.02	0.515	6 ⁶	0.840	36
393.1	0.5	10.39	0.02	0.734	6 ^b	0.920	38	473.1	0.5	11.36	0.02	0.569	6 ⁶	0.813	3°
393.1	0.5	10.68	0.02	0.760	66	0.905	4 ^b	473.1	0.5	11.61	0.02	0.582	5 ⁶	0.810	3°
393.1	0.5	10.80	0.02	0.773	76			473.1	0.5	11.98	0.02	0.618	5*	0.782	4 ^b

^aApparatus 3 (2). ^bApparatus 2 (2).

Table VI. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Ethane (1)-Mesitylene (2)

.

T/K	σ(<i>T</i>)/ K	P/ MPa	$\sigma(P)/MPa$	x ₁	$\frac{\sigma(x_1)}{10^{-3}}$	y_1	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(<i>T</i>)/ K	P/ MPa	σ(P) / MPa	x ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$
313.1	0.1	0.50	0.01	0.075	5ª	0.9980	0.2ª	402.8	0.5	10.56	0.02	0.691	7 <u>°</u>	0.915	7 <u>°</u>
313.1	0.1	1.27	0.01	0.204	4ª	0.9988	0.1ª	402.8	0.5	11.12	0.02	0.741	8°	0.872	7°
313.1	0.1	2.07	0.01	0.317	6ª	0.9989	0.14	473.0	0.5	0.91	0.02	0.038	10	0.701	6 ⁶
313.1	0.1	2.89	0.01	0.468	7ª	0.9989	0.1ª	473.0	0.5	1.51	0.02	0.070	10	0.793	4 ^b
313.1	0.1	3.70	0.01	0.627	74	0.9986	0.24	473.0	0.5	2.19	0.02		-	0.846	50
313.1	0.1	4.52	0.01	0.813	6ª	0.9981	0.2ª	473.0	0.5	3.01	0.02	0.145	26	0.872	86
313.1	0.1	4.92	0.01	0.910	44	0.9975	0.24	473.0	0.5	4.94	0.02	0.244	4 ^b	0.896	5 ⁶
313.1	0.1	5.06	0.01	0.944	34	0.9971	0.2^{4}	473.0	0.5	7.13	0.02	0.349	4 ^b	0.901	36
402.8	0.5	1.03	0.02	0.073	26	0.950	4 ^b	473.0	0.5	9.09	0.02	0.444	5 ⁶	0.892	4 ^b
402.8	0.5	2.14	0.02	0.151	36	0.969	36	473.0	0.5	9.56	0.02	0.468	56		
402.8	0.5	3.85	0.02	0.266	4 ^b	0.975	26	473.0	0.5	10.30	0.02	0.503	6 ⁶		
402.8	0.5	5.54	0.02	0.373	6 ⁶	0.974	10	473.0	0.5	11.16	0.02	0.554	6 ⁶	0.866	36
402.8	0.5	7.03	0.02	0.464	6 ⁶	0.970	16	473.0	0.5	11.70	0.02	0.589	6 ⁶		
402.8	0.5	8.11	0.02	0.530	6 ⁶	0.962	20	473.0	0.5	12.43	0.02	0.640	6*	0.819	7°
402.8	0.5	9.57	0.02	0.624	6 ⁶	0.938	3*	473.0	0.5	12.82	0.02			0.736	8°

^a Apparatus 3 (2). ^b Apparatus 2 (2).

Table VII. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Ethane (1)-n-Propylbenzene (2)

<i>T</i> /K	σ(T)/ K	<i>P/</i> MPa	σ(P)/ MPa	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-8}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	$\sigma(T)/K$	P/ MPa	$\overline{\sigma(P)}/MPa$	x 1	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-8}}$
313.2 313.2 313.2 313.2 313.2 313.2 313.2 313.2 313.2 313.2 313.2	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.38 0.49 0.65 0.90 1.15 1.23 1.51 1.99 2.00	0.005 0.01 0.005 0.005 0.005 0.01 0.005 0.01 0.005	0.081 0.200 0.311	4ª 4ª 6°	0.9964 0.9979 0.9978 0.9982 0.9985 0.9988 0.9987 0.9989 0.9988	0.4° 0.2° 0.2° 0.3° 0.1° 0.2° 0.1° 0.2°	403.2 403.2 403.2 403.2 403.2 403.2 403.2 403.2 403.2 403.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2.50 3.72 5.24 6.79 8.30 9.74 10.71 10.94 12.00	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.183 0.266 0.363 0.453 0.539 0.626 0.682 0.691 0.745	30 40 70 70 60 70 60 60 60 50	0.972 0.973 0.970 0.967 0.942 0.919	1 ^b 1 ^b 2 ^b 2 ^b 4 ^b 3 ^b
313.2 313.2 313.2 313.2 313.2 313.2 313.2 313.2 313.2 403.2 403.2 403.2 403.2	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{array}$	2.80 2.97 3.62 4.18 4.29 4.80 5.00 5.12 0.45 0.49 1.25 2.28	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$	0.451 0.605 0.753 0.879 0.945 0.034 0.040 0.099 0.168	7ª 8ª 4ª 2ª 2 ^b 2 ^b 3 ^b 3 ^b	0.9989 0.9988 0.9987 0.9983 0.9983 0.9980 0.9971 0.9972 0.873 0.942 0.959	$\begin{array}{c} 0.1^{a} \\ 0.2^{c} \\ 0.1^{a} \\ 0.3^{c} \\ 0.2^{a} \\ 0.2^{a} \\ 0.4^{c} \\ 0.2^{a} \\ 5^{b} \\ 3^{b} \\ 2^{b} \end{array}$	403.2 473.1 473.1 473.1 473.1 473.1 473.1 473.1 473.1 473.1 473.1 473.1	$\begin{array}{c} 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\$	12.25 1.00 1.77 2.87 3.63 5.01 7.10 9.05 11.02 11.95 13.00 13.28	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.764 0.033 0.074 0.167 0.237 0.335 0.428 0.529 0.583 0.667 0.701	6 ⁶ 1 ⁶ 2 ⁶ 3 ⁶ 5 ⁶ 6 ⁶ 6 ⁶ 7 ⁶	0.640 0.801 0.871 0.903 0.904 0.896 0.872 0.856 0.804	6 ⁶ 6 ⁶ 4 ⁶ 3 ⁶ 3 ⁶ 4 ⁶ 4 ⁶

^a Apparatus 3 (2). ^b Apparatus 2 (2). ^c Apparatus 3 (this work).

Table VIII. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Ethane (1)-Methylcyclohexane (2)

T/K	σ(<i>T</i>)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(T)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> 1	σ(y ₁)/ 10 ⁻³
313.1	0.1	0.60	0.01	0.135	3ª	0.980	2ª	393.1	0.5	6.55	0.02	0.527	66	0.917	20
313.1	0.1	1.06	0.01	0.234	5ª	0.986	1ª	393.1	0.5	7.77	0.02	0.623	5 ⁶	0.901	5 ⁶
313.1	0.1	1.53	0.01	0.327	6ª	0.9884	0.8ª	393.1	0.5	8.30	0.02	0.667	5 ⁰		
313.1	0.1	1.99	0.01	0.414	6ª	0.9908	0.3ª	393.1	0.5	8.77	0.02	0.710	4 ⁶	0.886	7 ⁶
313.1	0.1	2.49	0.01	0.508	8ª	0.9926	0.5ª	393.1	0.5	9.18	0.02	0.759	4 ^b	0.869	7 ⁶
313.1	0.1	2.98	0.01	0.604	7ª	0.9933	0.5ª	473.0	0.5	2 05	0.02	0.072	96	0.490	50
313.1	0.1	3.45	0.01	0.690	7ª	0.9931	0.5ª	473.0	0.5	3.08	0.02	0.072	รือ	0.400	5b
313.1	0.1	3.98	0.01	0.791	4ª	0. 99 33	0.3ª	473 0	0.5	1 03	0.02	0.100	20	0.002	10
313.1	0.1	4.42	0.01	0.869	4ª	0.9933	0.3ª	472.0	0.5	5 00	0.02	0.100	50	0.000	30
313.1	0.1	4.77	0.01	0.923	3ª	0.9932	0.6ª	473.0	0.5	6.93	0.02	0.250	50	0.721	50
393.1	0.5	1.03	0.02	0.080	26	0.790	9,	473.0	0.5	7.80	0.02	0.420	50	0.728	40
393.1	0.5	2.16	0.02	0.180	3,	0.879	3,	473.0	0.5	8.86	0.02	0.506	6 ^b	0.684	5 ⁶
393.1	0.5	2.92	0.02	0.244	4 ^b	0.902	2*	473.0	0.5	9.06	0.02	0.519	6 ^b		
393.1	0.5	4.12	0.02	0.343	5 ⁶	0.916	2٥	473.0	0.5	9.25	0.02			0.642	5 ⁶
393.1	0.5	5.26	0.02	0.429	5 ^b	0.916	3°	473.0	0.5	9.36	0.02	0.561	70		-

^a Apparatus 3 (2). ^b Apparatus 2 (2).

Table IX. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Ethane (1)-n-Propylcyclohexane (2)

																_
T/K	σ(<i>T</i>)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> 1	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(<i>T</i>)/ Κ	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	У1	$\frac{\sigma(y_1)}{10^{-3}}$	
313.1 313.1 313.1 313.1 313.1 313.1 313.1 313.1 313.1 393.0 393.0 393.0 393.0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5	0.91 1.60 2.29 3.00 3.71 4.42 4.97 5.12 0.76 1.52 3.25 4.74	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	0.187 0.319 0.440 0.569 0.700 0.827 0.914 0.954 0.067 0.133 0.271 0.379	5° 6° 7° 5° 4° 3° 2° 1° 2° 1° 2° 4° 5°	0.9983 0.9987 0.9991 0.9992 0.9989 0.9985 0.9985 0.9981 0.9979 0.935 0.961 0.975 0.976	$\begin{array}{c} 0.2^{a} \\ 0.1^{a} \\ 0.1^{a} \\ 0.1^{a} \\ 0.1^{a} \\ 0.2^{a} \\ 0.2^{a} \\ 2^{b} \\ 1^{b} \\ 0.8^{b} \\ 0.8^{b} \end{array}$	393.0 393.0 393.0 472.9 472.9 472.9 472.9 472.9 472.9 472.9 472.9 472.9 472.9 472.9 472.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	9.60 10.49 10.86 1.10 2.08 3.00 4.02 5.72 7.19 8.99 10.55 11.52	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.708 0.783 0.846 0.052 0.109 0.160 0.216 0.311 0.386 0.473 0.561	4 ^b 5 ^b 7 ^b 2 ^b 3 ^b 4 ^b 5 ^b 5 ^b 6 ^b 5 ^b	0.926 0.884 0.709 0.822 0.859 0.879 0.893 0.894 0.884 0.884 0.8861 0.826	20 20 50 30 30 30 30 30 30 30	
393.0 393.0	0.5 0.5	6.25 7.73	0.02 0.02	0. 48 3 0.579	6° 6°	0.976 0.9 6 7	0.9 ^b 1 ^b	472.9	0.5	11.77	0.02	0.654	50	0.804	4 ⁶	

^a Apparatus 3 (3). ^b Apparatus 2 (3).

Table X. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Propane (1)-Toluene (2)

T/K	σ(T)/ K	P/ MPa	σ(P)/ MPa	x ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(T)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$
312.8	0.1	0.250	0.003	0.121	3ª			394.0	0.5	0.63	0.02	0.082	28	0.744	6 ^b
313.1	0.1	0.310	0.003			0.9751	1.0 ^c	394.0	0.5	1.15	0.02	0.171	30	0.851	36
313.1	0.1	0.320	0.003			0.9752	1.0°	394.0	0.5	1.79	0.02	0.295	5°	0.904	30
312.8	0.1	0.400	0.003	0.208	5ª			394.0	0.5	2.38	0.02	0.406	6 ⁶	0.923	30
313.1	0.1	0.460	0.003			0.9836	0.8°	394.0	0.5	3.02	0.02	0.541	5 ⁶	0.937	36
313.1	0.1	0.525	0.003			0.9855	0.8°	394.0	0.5	3.63	0.02	0.660	50	0.942	26
312.8	0.1	0.549	0.003	0.304	5ª			394.0	0.5	4.20	0.02	0.766	56	0.947	2 ⁶
313.1	0.1	0.651	0.003			0.9887	0.6°	394.0	0.5	4.83	0.02	0.870	4 ⁶	0.939	4 ^b
312.8	0.1	0.700	0.003	0.418	6ª			473 9	0.5	1 99	0.02	0.049	16	0 221	5.b
313.1	0.1	0.793	0.003			0.9913	0.6°	473.0	0.5	2 00	0.02	0.040	06	0.556	50
312.8	0.1	0.850	0.003	0.541	6ª			4739	0.5	2.00	0.02	0.110	20	0.000	50
313.1	0.1	0.997	0.003			0.9944	0.5°	479.9	0.5	2.07	0.02	0.100	10	0.002	50
312.8	0.1	1.007	0.003	0.703	5^a			472 0	0.5	1 4 2	0.02	0.209	4. 66	0.705	50
312.8	0.1	1.152	0.003	0.844	4ª			4729	0.5	5.96	0.02	0.300	50	0.730	50
313.1	0.1	1.178	0.003			0.9960	0.6°	4739	0.5	6.06	0.02	0.409	66	0.746	30
312.8	0.1	1.299	0.003	0.957	1ª			473.2	0.5	6.63	0.02	0.603	60	0.740	6*

^aApparatus 3 (4). ^bApparatus 2 (4). ^cApparatus 3 (this work).

Table XI. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Propane (1)-m-Xylene (2)

_					-	-	• /	-	• •								
	T/K	$\frac{\sigma(T)}{K}$	P/ MPa	$\sigma(P)/MPa$	x 1	$\frac{\sigma(x_1)}{10^{-3}}$	y_1	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	$\frac{\sigma(T)}{K}$	P/ MPa	σ(P)/ MPa	x 1	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	
	313.3	0.1	0.252	0.003	0.140	3ª			393.7	0.5	0.41	0.02	0.060	10	0.826	6 ^b	
	313.3	0.1	0.258	0.005	0.100	4-	0.9930	0.4 ^c	393.7	0.5	1.81	0.02	0.313	50	0.924	26	
	313.2 313.3	0.1 0.1	0.400 0.401	0.005 0.003	0.232	4ª	0.9936	0.3¢	393.7 393.7	0.5 0.5	$2.43 \\ 3.17$	0.02 0.02	0.432 0.576	6° 6'	0.955 0. 96 1	2° 2 ⁶	
	313.2 313.2	0.1 0.1	0.485 0.546	$0.005 \\ 0.005$			0.9948 0.9952	0.3° 0.3°	393.7 393.7	0.5 0.5	3.86 4.40	0.02 0.02	0.712 0.810	6 ⁶ 4 ⁶	0. 96 3 0. 966	2 ⁶ 2 ⁶	
	313.3 313.2	0.1 0.1	0.552	0.003	0.327	6ª	0.9963	0.2	393.7	0.5	4.82	0.02	0.879	30	0.968	2 ⁶	
	313.3 313.3	0.1	0.703	0.003	0. 439 0.559	6ª	0.9962	0.3ª 0.2ª	473.2 473.2	0.5 0.5	0.79 1.78	0.02	0.034 0.129	2° 3°	0.395 0.680	15° 13°	
	313.3 313.2	0.1 0.1	0.992	0.003	0.687	6ª	0.9979	0.2ª 0.2°	473.2 473.2	0.5 0.5	2.83 3.83	0.02	0.230	4° 5°	0.787 0.822	36	
	313.3 313.2	0.1	1.153 1.278	0.003	0.837	4ª	0.9986	0.1ª	473.2 473.2	0.5 0.5	4.81 5.74	0.02 0.02	0.422 0.513	6° 6 ⁸	0.833 0.833	30	
	313.3	0.5	1.300	0.003	0.949	2ª	0.9994	0.1ª	473.2 473.2	0.5 0.5	6.78 7.21	$\begin{array}{c} 0.02 \\ 0.02 \end{array}$	0.629 0.709	5° 5°	0.807 0.726	3° 5°	

^a Apparatus 3 (4). ^b Apparatus 2 (4). ^c Apparatus 3 (this work).

Table XII. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Propane (1)-Mesitylene (2)

T/K	σ(<i>T</i>)/ K	P/ MPa	$\frac{\sigma(P)}{MPa}$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	y ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(T)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-8}}$	y_1	$\frac{\sigma(y_1)}{10^{-8}}$
313.1	0.1	0.297	0.003	<u>.</u>		0.9967	0.3°	403.1	0.5	1.88	0.02	0.301	56	0.966	16
313.1	0.1	0.349	0.003	0.185	5ª	0.9973	0.2°	403.1	0.5	2.49	0.02	0.394	7٥	0.971	10
313.1	0.1	0.509	0.003	0.295	7ª	0.9979	0.2°	403.1	0.5	3.34	0.02	0.533	7٥	0.973	16
313.1	0.1	0.657	0.003	0.397	7ª			403.1	0.5	4.09	0.02	0.663	68	0.973	16
313.1	0.1	0.666	0.003			0.9982	0.2°	403.1	0.5	4.72	0.02	0.774	50	0. 966	1 ⁶
313.1	0.1	0.821	0.003	0.530	8ª			403.1	0.5	5.10	0.02	0.838	50	0.941	2 ⁶
313.1	0.1	0.828	0.003			0.9985	0.3°	473.0	0.5	0.96	0.02	0.071	96	0 716	50
313.1	0.1	0.963	0.003	0.660	8ª			473.0	0.5	1 60	0.02	0.132	30	0.808	40
313.1	0.1	0.970	0.003			0.9989	0.2°	473.0	0.5	3 10	0.02	0.271	50	0.872	30
313.1	0.1	1.102	0.003	0.781	6ª	0. 9991	0.1°	473.0	0.5	4 58	0.02	0 409	66	0.887	30
313.1	0.1	1.204	0.003			0.9995	0.1°	473.0	0.5	5.07	0.02	0 454	69	0.883	30
313.1	0.1	1.216	0.003	0.881	5ª			473.0	0.5	5 98	0.02	0.541	76	0.878	40
313.1	0.1	1.306	0.003	0. 96 3	3ª	0.9998	0.1°	473.0	0.5	7.04	0.02	0.653	50	0.843	40
403.1	0.5	0.67	0.02	0.103	30	0.929	26	473.0	0.5	7.43	0.02	0.715	50	0.803	50
403.1	0.5	1.30	0.02	0.208	4 ^b	0.957	1٥	473.0	0.5	7.55	0.02	0.770	50	0.796	50

^a Apparatus 3 (3). ^b Apparatus 2 (3). ^c Apparatus 3 (this work).

Table XIII. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phhase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Propane (1)-Propylbenzene (2)

T/K	σ(T)/ K	P/ MPa	σ(P)/ MPa	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	σ(T)/ K	<i>P/</i> MPa	σ(<i>P</i>)/ MPa	x 1	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$
313.2	0.1	0.325	0.005			0.9966	0.5°	393.2	0.5	1.51	0.02	0.282	40	0.966	26
313.3	0.1	0.350	0.003	0.202	4ª			393.2	0.5	2.19	0.02	0.412	6 ⁶	0.975	36
313.3	0.1	0.499	0.003	0.305	5ª			393.2	0.5	2.75	0.02	0.513	6 ⁶	0.976	26
313.2	0.1	0.525	0.005			0.9977	0.2°	393.2	0.5	3.30	0.02	0.615	5°	0.975	30
313.3	0.1	0.638	0.003	0.400	7ª			393.2	0.5	3.77	0.02	0.708	5°	0.973	3*
313.2	0.1	0.700	0.005			0.9985	0.2°	393.2	0.5	4.11	0.02	0.774	6 ^b	0.964	36
313.3	0.1	0.799	0.003	0.522	8ª			393.2	0.5	4.39	0.02	0.829	5 ⁶	0.948	30
313.2	0.1	0.820	0.005			0.9987	0.2°	479.9	0.5	0 92	0.09	0.050	10	0 696	cb
313.3	0.1	0.942	0.003	0.643	8ª			470.4	0.5	1.00	0.02	0.009	20	0.020	40
313.2	0.1	0.955	0.005			0.9990	0.1°	410.4	0.5	2.04	0.02	0.103	50	0.010	36
313.3	0.1	1.100	0.003	0.769	5ª			470.2	0.5	4 14	0.02	0.210	50	0.000	46
313.2	0.1	1.110	0.005			0.9992	0.1°	410.4	0.5	4.14	0.02	0.300	50	0.073	4
313.2	0.1	1.210	0.005			0.9995	0.1°	472.0	0.5	6 99	0.02	0.402	5) E2	0.019	50
313.3	0.1	1.256	0.003	0.909	4ª	0.9995	0.2ª	413.4	0.5	0.32	0.02	0.000	0' 0b	0.000	0" ch
313.3	0.1	1.309	0.003	0.949	4ª	0.9997	0.2ª	4/3.2	0.5	0.70	0.02	0.000	0°	0.001	76
393.2	0.5	0.50	0.02	0.093	2 ^b	0.923	3b 2b	473.2 473.2	0.5	0.97 7.27	0.02	0.854	50	0.838	76

^a Apparatus 3 (3). ^b Apparatus 2 (3). ^c Apparatus 3 (this work).

Table XIV. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Propane (1)-Cyclohexane (2)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								• ·· _ · · /			_	_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T/K	σ(<i>T</i>)/ K	P/ MPa	σ(P)/ MPa	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	y_1	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	$\frac{\sigma(T)}{K}$	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0 313.0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.255 0.405 0.554 0.701 0.855 1.004 1.160 1.236 1.318 0.68 0.93 1.26	0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.02	0.152 0.262 0.378 0.492 0.615 0.732 0.847 0.916 0.970 0.084 0.138 0.208	4° 5° 6° 7° 5° 4° 4° 1° 2 ^b 3 ^b 4 ^b	0.906 0.944 0.962 0.9732 0.9813 0.9868 0.9922 0.9957 0.9983 0.557 0.680 0.757	3^{a} 1^{a} 0.7^{a} 0.8^{a} 0.5^{a} 0.5^{a} 0.2^{a} 7^{b} 6^{b} 4^{b}	393.0 393.0 393.0 393.0 473.0 473.0 473.0 473.0 473.0 473.0 473.0 473.0	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2.17 2.64 3.37 3.88 4.06 1.80 2.29 2.90 3.50 4.14 4.76 5.33	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.395 0.491 0.637 0.731 0.761 0.054 0.104 0.175 0.238 0.307 0.372 0.436	6 ^b 5 ^b 5 ^b 2 ^b 4 ^b 5 ^b 6 ^b	0.855 0.881 0.902 0.908 0.903 0.232 0.370 0.490 0.555 0.595 0.619 0.627	3 ^b 3 ^b 3 ^b 5 ^b 5 ^b 5 ^b 6 ^b 5 ^b 5 ^b 5 ^b 5 ^b 5 ^b 5 ^b 5 ^b 5	
	393.0	0.5	1.63	0.02	0.287	50	0.812	40	473.0	0.5	5.90	0.02	0.515	80	0.608	60	

^a Apparatus 3 (3). ^b Apparatus 2 (3).

Table XV. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Propane (1)-Methylcyclohexane (2)

T/K	σ(T)/ K	P/ MPa	$\sigma(P)/MPa$	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> ₁	$\frac{\sigma(y_1)}{10^{-3}}$	T/K	$\sigma(T)/K$	P/ MPa	$\overline{\sigma(P)}/$ MPa	<i>x</i> ₁	$\frac{\sigma(x_1)}{10^{-3}}$	<i>y</i> 1	$\frac{\sigma(y_1)}{10^{-3}}$	_
313.3	0.1	0.194	0.003	0.144	3ª	0.938	2ª	393.2	0.5	2.91	0.02	0.556	50	0.927	3,	
313.3	0.1	0.257	0.003	0.191	4ª	0.9526	0.9ª	233.2	0.5	3.37	0.02	0.642	6°	0.933	3°	
313.3	0.1	0.400	0.003	0.299	5ª	0.9717	0.6ª	393.2	0.5	3.76	0.02	0.712	5*	0.938	3°	
313.3	0.1	0.550	0.003	0.411	5ª	0.9803	0.7ª	393.2	0.5	4.23	0.02	0.786	50	0.920	50	
313.3	0.1	0.700	0.003	0.521	6ª	0.9860	0.6ª	479 9	0.5	1 74	0.02	0.008	96	0 499	69	
313.3	0.1	0.827	0.003	0.613	6°	0.9894	0.4ª	479 9	0.5	2 60	0.02	0.000	ã b	0.585	49	
313.3	0.1	1.001	0.003	0.747	5ª	0.9935	0.3ª	479.0	0.0	2.00	0.02	0.101	46	0.000	65	
313.3	0.1	1.155	0.003	0.856	5ª	0.9960	0.2ª	472.9	0.5	4 10	0.02	0.210	4. zh	0.000	01	
313.3	0.1	1.301	0.003	0.953	34	0.9985	0.1°	472.9	0.5	4.12	0.02	0.351	5	0.695	0,	
					-			472.9	0.5	4.83	0.02	0.427	5.	0.708	6,	
393.2	0.5	0.77	0.02	0.126	30	0.757	5°	472.9	0.5	5.38	0.02	0.488	6°	0.714	5°	
393.2	0.5	1.26	0.02	0.227	4 ⁶	0.845	4 ^b	472.9	0.5	5.69	0.02	0.523	5 ⁶	0.703	6 ⁶	
393.2	0.5	1.81	0.02	0.341	56	0.894	3,	472. 9	0.5	6.15	0.02	0.603	6 ⁶	0.662	6 ⁶	
393.2	0.5	2.33	0.02	0.452	66	0.917	30						-		-	

^a Apparatus 3 (4). ^b Apparatus 2 (4).

gauge. Pressure accuracy depends on the transducer and its range. The uncertainties $\sigma(P)$ are given in Tables I-XVI.

Temperature T measurements are always carried out with thermocouples, which are calibrated against a platinum probe. Estimated temperature uncertainties $\sigma(T)$ are also reported in Tables I-XVI.

Vapor-phase and liquid-phase mole fractions z_i , where z =

x for liquid and z = y for vapor, were obtained through GLC determinations. Detector calibration was carried out by injecting known amounts of pure components. The uncertainties reported in Tables I-XVI take into account the uncertainty on detector calibrations, and the reproducibility $\sigma(A_i)$ of the chromatographic ratio areas A_i on at least five samples, corresponding to the same equilibrium. The number of moles N_i of

Table XVI. Vapor-Liquid Equilibrium Data, Temperature T, Pressure P, Liquid-Phase x and Vapor-Phase y Mole Fractions, and the Uncertainties σ , for the System Propane (1)-n-Propylcyclohexane (2)

T /V	$\sigma(T)/V$	P/ MPa	$\sigma(P)/MP_{c}$		$\sigma(x_1)/$		$\sigma(y_1)/$	TIV	$\sigma(T)/K$	P/	$\sigma(P)/MP_{\alpha}$		$\sigma(x_1)/$		$\sigma(y_1)/$
<u></u>	n	MFa	IVIFA	\mathbf{x}_1	10 -	<i>y</i> ₁	10 -	1/1	ĸ	IVIFA	IVIPa	\mathbf{x}_1	10 -	y_1	10 -
313.1	0.1	0.272	0.003			0.9950	0.4 ^c	393.1	0.5	4.14	0.02	0.787	46	0.9789	0. 9 ^b
313.1	0.1	0.349	0.003			0.9963	0.3°	393.1	0.5	4.36	0.02	0.819	4 ^b		
313.1	0.1	0.357	0.003	0.258	5ª			393.1	0.5	4.45	0.02	0.833	30	0.979	10
313.1	0.1	0.499	0.003	0.364	6ª	0.9974	0.2°	393.1	0.5	4.54	0.02	0.844	36	0.976	16
313.1	0.1	0.654	0.003	0.472	8ª	0.9981	0.2^{c}	393.1	0.5	4.79	0.02	0.884	30	0.957	2 ^ø
313.1	0.1	0.803	0.003	0.576	6ª	0.9986	0.1°	479 1	0.5	1 00	0.00	0.097	0 b	0 671	<u>c</u> b
313.1	0.1	0.956	0.003	0.689	6ª	0.9990	0.1°	470.1	0.5	1.00	0.02	0.007	2.	0.071	5
313.1	0.1	1.105	0.003	0.797	5ª	0.9993	0.1°	473.1	0.5	1.99	0.02	0.190	3-	0.012	0. eh
313.1	0.1	1.228	0.003			0.9996	0.1	4/3.1	0.5	3.00	0.02	0.299	50	0.891	55
313.1	01	1 238	0.003	0.895	5ª	0.000	0.1	473.1	0.5	4.05	0.02	0.402	5		
212 1	0.1	1 200	0.000	0.000	04	0 0008	0.10	473.1	0.5	4.08	0.02	0.406	5°	0.874	4º
010.1	0.1	1.300	0.003	0.340	2-	0.9990	0.1	473.1	0.5	5.00	0.02	0.491	6 ⁶	0.881	4 ⁶
393.1	0.5	0.50	0.02	0.113	28	0.907	30	473.1	0.5	5.98	0.02	0.583	5*	0.873	4 ⁶
393.1	0.5	0.96	0.02	0.206	3°	0.950	2 ⁶	473.1	0.5	6.50	0.02	0.634	50	0.861	4 ⁶
393.1	0.5	2.01	0.02	0.414	56	0.9717	0. 9 ^b	473.1	0.5	6.62	0.02	0.646	5 ⁶	0.859	4 ⁶
393.1	0.5	3.04	0.02	0.602	5 ⁶	0.9784	0.6 ^b	473.1	0.5	6.74	0.02	0.659	50		
393.1	0.5	3.06	0.02	0.699	4 ^b	0.9785	0.70	473.1	0.5	7.00	0.02	0.691	6 ⁶	0.846	86

^aApparatus 3 (3). ^bApparatus 2 (3). ^cApparatus 3 (this work).

Table XVII. Refractive Index \boldsymbol{z}_D and Liquid Density ρ of the Compounds Used

	n _D (293	.15 K)	$ ho(293.15 \text{ K})/(\text{g cm}^{-3})$				
compound	this work	lit.	this work	lit.			
toluene	1.494 91	1.496 93ª	0.86698	0.866 834			
<i>m</i> -xylene	1.497 58	1.497 22ª	0.86434	0.864 36ª			
mesitylene	1.4985	1.499 37*	0.8658	0.86518ª			
n-propylbenzene	1.4923	1.492 02 ^b	0.8621	0.862 0 ^b			
cyclohexane			0.77835	0.778 55ª			
methylcyclohexane	1.4231	1.42312	0.76939	0.769 394			
n-propylcyclohexane	1.4369	1.437 05*	0.7936	0. 793 6 0°			

^aReference 10. ^bReference 11.

component / was computed from

$$\mathbf{v}_i = \mathbf{A}_i \, \mathbf{R}_i \tag{1}$$

where A_i is given by the calibration curve and R_i is the response coefficient of the detector for component *i*.

٨

Thus, for a binary mixture, the $\sigma(z_1)$ uncertainty is given by

$$\frac{\sigma(z_1)}{z_1} = z_2 \left[\frac{\sigma(A_1)}{A_1} + \frac{\sigma(R_1)}{R_1} + \frac{\sigma(A_2)}{A_2} + \frac{\sigma(R_2)}{R_2} \right] \quad (2)$$

where $\sigma(R_i)$ is the uncertainty of R_i .

Sources and Purities of Chemicals. Methane, ethane, and propane were provided by Messer-Griesheim, with stated purities of 99.995, 99.95, and 99.95 vol %, respectively. Cyclohexane, toluene, m-xylene, and n-propylbenzene were from Merck, with stated GLC purities of 99.7, 99.5, 98.5, and 99.0 mol %, respectively. Mesitylene from Fluka had a minimum GLC purity of 99 mol %. Methylcyclohexane was supplied by Janssen, with a specified purity of >99%; n-propylcyclohexane, from Sigma, had a purity of >99%. Refractive indices $n_{\rm D}$ and densities ρ of the liquid components were measured with a prism refractometer fitted with a sodium vapor lamp (Carl Zeiss), uncertainty 2 \times 10⁻⁵, or a vibrating-tube densimeter (ANTON PAAR, Model DMA 46), uncertainty 3×10^{-5} g cm⁻³. They are given in Table XVII, along with the corresponding literature data. All the chemicals were used without further purification except for careful degassing of the liquids.

Experimental Results. Vapor-Ilquid equilibrium results are listed in Tables I-XVI.

Prausnitz-Keeler Test. It is possible to demonstrate (δ) that the logarithm of the fugacity coefficient of the less volatile component can be obtained both from the experimental data, neglecting the Poynting correction, the activity coefficient in the

Figure 1. Consistency test on low-pressure experimental data for the methane (1)-*n*-propylbenzene (2) system at 313 K (eq 3). The straight line has a slope equal to $2B_{12}$, where $B_{12} \approx -0.27$ dm³ mol⁻¹ is the second virial coefficient: \Box , old data (1); ∇ , new data (this work).

liquid phase, and the fugacity coefficient in the reference state, and from a virial development reduced to two terms, neglecting smaller terms

$$A = \ln\left(\frac{x_2 P_2^S Z^V}{y_2 P}\right) = \frac{2y_1}{v^V} \left(B_{12} + \frac{3}{4} \frac{y_1}{v^V} C_{112}\right)$$
(3)

where 2 represents the less volatile component, $P_2^{\rm S}$ is its saturation pressure, P is the total pressure, $Z^{\rm V}$ is the compressibility factor, $v^{\rm V}$ is the molar volume of the vapor phase, and B_{12} and C_{112} are the second and third molar virial coefficients.

In a plot of A against y_i/v^v , the points calculated from experimental data should be close to a straight line of slope $2B_{12}$ for low values of P.

This test was applied to our data at the lower temperature where enough points are available at low P. Some of our earlier data (1-4) were found inconsistent with respect of this test, as explained by Renon et al. (5), due to a malfunction of the apparatus because of the capillary sampling system. After modification of the experimental procedure, new data consistent with the tests were obtained, as indicated in the footnotes of Tables I-XVI.

An example of the test is given in Figure 1, where the first five points only have been used. The second virial coefficient found by linear regression is $B_{12} = -0.27$ dm³ mol⁻¹.

Estimation of the third virial coefficient, $C_{112} = 0.015 \text{ dm}^6$

Figure 2. Influence of the third virial coefficient, eq 3, for the methane (1) + n-propylbenzene (2) system at 313 K: □, old data (1); ∇, new data (this work). The straight line is the plot assuming $B_{12} = 0.27$ dm³ mol⁻¹; the curve is the plot using $B_{12} = -0.25$ dm³ mol⁻¹ and $C_{112} =$ 0.015 dm⁶ mol⁻².

mol⁻² (simultaneously with the second $B_{12} = -0.25$ dm³ mol⁻¹) is possible by regression according to eq 3 of all the experimental points below 15 MPa, as shown in Figure 2. The third virial coefficient has a nonnegligible effect for $y_1/v^{\vee} > 2$ mol dm^{-3} (*P* > 4 MPa).

Acknowledgment

We are grateful to members of the K-value Steering Commettee, especially Dr. Hans Kistenmacher, for encouragement and advice, and we thank all the other co-workers who took part in the measurements: P. Alali, A. Chareton, F. Fontalba, C. Lafeuil, and A. Valtz.

Glossary

Α	defined by eq 3
A ₁	GLC peak area for component /
B 12	second cross molar virial coefficient, dm3 mol-1
C 122	third cross molar virial coefficient, dm ⁸ mol ⁻²
P	pressure, MPa
Τ	temperature, K

- molar volume, dm3 mol-1 v
- x liquid mole fraction
- У vapor. mole fraction
- z mole fraction (either x or y)
- Ζ compressibility factor

Greek Letters

σ uncertainty

Superscripts

- S at saturation
- v vapor phase

Subscripts

- 1 more volatile component
- 2 less volatile component

Registry No. Methane, 74-82-8; ethane, 74-84-0; propane, 74-98-6; toluene, 108-88-3; m-xylene, 108-38-3; mesitylene, 108-67-8; n-propylbenzene, 103-65-1; cyclohexane, 110-82-7; methylcyclohexane, 108-87-2; propylcyclohexane, 1678-92-8.

Literature Cited

- (1) Laugier, s.; Alali, P.; Valtz, A.; Fontalba, F.; Richon, D.; Renon, H. GPA Research Report RR-75; GPA: Tulsa, OK, 1984.
- Laugier, S.; Valtz, A.; Chareton, A.; Richon, D.; Renon, H. GPA Research Report RR-82; GPA: Tulsa, OK, 1984.
 Laugier, S.; Valtz, A.; Chareton, A.; Richon, D.; Renon, H. GPA Research Report RR-88; GPA: Tulsa, OK, 1985.
 Chareton, A.; Valtz, A.; Chareton, A.; Richon, D.; Renon, H. GPA Research Report RR-88; GPA: Tulsa, OK, 1985.
- (4) Chareton, A.; Valtz, A.; Lafeuil, C.; Laugler, S.; Richon, D.; Renon, H. GPA Research Report RR-101; GPA: Tulsa, OK, 1986.
 (5) Renon, H.; Laugler, S.; Schwartzentruber, J.; Richon, D. Fluid Phase Equilib. 1989, 51, 285.

- Prausnitz, J. M.; Keeler, R. N. AIChE J. 1981, 7, 399.
 Legret, D.; Richon, D.; Renon, H. AIChE J. 1981, 27, 203.
 Figuière, P.; Hom, J.-F.; Laugler, S.; Renon, H.; Richon, D.; Szwarc, H. AIChE J. 1980, 26, 872. Laugier, S.; Richon, D. Rev. Sci. Instrum. 1988, 57, 469
- (10) Rkddick, J. A.; Bunger, W. B.; Sakano, T. K. In Organic Solvents, 4th ed.; Weissengerger, A., Ed.; Techniques of Chemistry, Vol. II; John Wiley & Sons: New York, 1986.
- TRC—Thermodynamic Tables—Hydrocarbons. Thermodynamics Re-search Center, The Texas A&M University System: College Station, TX, 1954, p. a-2120; 1985, p. a-3290 (loose-leaf data sheets). (11) TRC-

Received for review November 21, 1989. Accepted September 4, 1990. We are grateful to the Gas Processors Association for financial support.